WeLab汇立集团获发明专利!助力金融机构提升数据分析和处理能力

焦点 2024-12-27 11:47:32 893

近日,汇和处WeLab汇立集团宣布由其创新研究中心团队研发的立集理能力“联合建模方法、装置、团获提升电子设备及存储介质”获国家知识产权局颁发发明专利证书。发明分析该专利提供了一种

基于XGBoost算法的专利助力混合联邦学习方法,旨在解决机构方在同时缺少数据样本和特征维度的金融机构情况下,如何与其他机构联合建模的数据问题。

WeLab汇立集团获发明专利!助力金融机构提升数据分析和处理能力

背景

随着大数据和人工智能技术的汇和处发展,传统的立集理能力金融业务模式正在被逐渐颠覆,以往的团获提升金融模型和算法在处理大规模、复杂的发明分析数据时面临诸多挑战,如数据多样性和高维性带来的专利助力处理难题,以及数据隐私和安全性的金融机构保护问题。这些问题使得单个机构难以独立完成高质量的数据模型训练,因此需要与其他机构联合建模。汇和处

集团“联合建模方法、装置、电子设备及存储介质”专利为金融行业提供了一种高效、安全的联合建模方法。通过结合XGBoost算法、直方图算法、同态加密、安全聚合和gRPC交互等多种技术,为各机构提供了一种更为灵活的联邦学习方案,即混合联邦学习,各机构可以在不共享原始数据的情况下,共同训练一个高效的机器学习模型,确保了数据的安全性和模型的有效性,解决了数据样本和特征维度不足的问题。该技术避免了人工资源浪费、机器资源浪费,同时显著地减少了数据传输量,提高了计算效率以及数据处理的准确度和速度。

应用

应用一、银行风控模型

风控模型是用于评估贷款申请风险至关重要的工具。然而,单个银行往往难以获取足够的数据样本和特征维度,导致模型的准确性和鲁棒性不足。通过基于XGBoost的混合联邦学习方案,多家银行可以联合训练风控模型,共享数据特征,提高模型的预测能力,同时确保数据的安全性和隐私性。

应用二、信用评分系统

信用评分系统是金融机构评估个人或企业信用风险的重要手段。传统的信用评分系统依赖于单一机构的数据,容易出现数据偏差和模型过拟合的问题。通过混合联邦学习,多家金融机构可以联合训练信用评分模型,综合考虑多方面的特征信息,提高评分的准确性和公平性。

应用三、金融欺诈检测

传统的欺诈检测模型往往只能基于单一机构的数据进行训练,难以捕捉到跨机构的欺诈行为。通过混合联邦学习,多家金融机构可以联合训练欺诈检测模型,共享异常行为的特征信息,提高模型的检测能力和泛化能力。

小结

基于XGBoost的混合联邦学习方案为金融行业提供了一种高效、安全的联合建模方法。通过结合多种先进技术,该方案不仅解决了数据样本和特征维度不足的问题,还确保了数据的安全性和隐私性。未来,WeLab汇立集团创新研究中心也将继续相关技术的探索,让该方案在金融行业中发挥更大的作用,推动金融行业的智能化和数字化转型。

 

本文地址:http://zf0bt.ahlulin.com/html/56b81199132.html
版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。

全站热门

微星新款31.5寸显示器发布:4K 240Hz屏、配DP 2.1接口

希望没事!荷兰vs匈牙利场边出现紧急医疗状况,比赛暂停进行

[流言板]打出表现!巴雷特近三场砍下31.7分8.7篮板7.7助攻

Xbox发布会:《深海迷航2》将于2025年推出抢先体验

重温苹果10大高光时刻:下一次惊喜明年可期

人社部等十部门印发意见 进一步加强农民工服务保障

意媒:蒙扎考虑冬窗引进卡萨迪,贝蒂斯、黄潜也对球员感兴趣

进世界赛年度积分规则可以改一改了

友情链接